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Abstract
We compute the spectrum of the classical and quantum mechanical coarse-
grained propagators for a piecewise linear discontinuous map. We analyze
the quantum-classical correspondence and the evolution of the spectrum with
increasing phase-space resolution. Our results are compared to those obtained
for a mixed system.

PACS number: 05.45.Mt

In this work we consider systems with a highly complex regular dynamics exhibiting, as in
the chaotic case, an endless hierarchy of phase-space structures. Examples of such dynamics
are found in polygonal billiards on a surface with spherical curvature [1] and also in a class of
maps introduced in [2, 3] that can be characterized as discontinuous piecewise linear. Typical
phase-space portraits of such maps are shown in figure 1. An infinite number of chains of
elliptic islands pack the phase space. In the center of each island sits a stable periodic orbit of
an arbitrarily long period surrounded by a family of nested invariant curves which correspond
to open orbits having an infinite but periodic sequence with the same period. The motion
inside each island is regular. Their size decreases as the period increases and phase space
takes a fractal structure. The boundary of the islands constitute the unstable set which is the
infinite iteration of the discontinuity. The motion in these systems is non-chaotic but highly
irregular. In the case of the billiards this peculiar phase space is a consequence of the focusing
mechanism on the sphere, while in the second case it is due to the discontinuity of the map.

The corresponding quantum mechanical systems have been investigated in both examples.
For the billiards it was shown [4] that the quantum energy spectra follow a non-universal
intermediate statistics that can be understood in reference to the classical phase-space plot,
but no quantitative classical-quantum mechanical correspondence was derived. In [3] the
semiclassical regime of a piecewise linear map was explored using Gutzwiller’s method of
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(a) (b)

Figure 1. Phase-space portrait of map equation (1) for (a) ω = µ = π(
√

5 − 1)) (case I),
(b) ω = 1, µ = 0.05 (case II).

periodic orbit quantization. However, as pointed out by the authors, great difficulties arose
in their semiclassical approximation when describing the eigenstates not supported by stable
periodic orbits. The relative failure of Gutzwiller’s approach was attributed to the ellipticity
of the dynamics of the map.

In the present contribution we attempt a different approach. We consider the discontinuous
mapping introduced in [3] from the point of view of the spectral properties of the Liouville
dynamics and study both the classical and the quantum Liouvillian at limited phase-space
resolution. The motivation is to compare the results to those well known that apply to chaotic
or mixed systems [5, 6].

In pure hyperbolic systems the asymptotic decay of classical correlation functions is
exponential and the decay rates can be rigorously obtained from the Ruelle–Pollicott (RP)
resonances [7]. To study the long time behavior of general chaotic and mixed systems, which
are beyond the validity of the RP theorem, non-rigorous methods have been developed to
compute the resonances of the Frobenius–Perron (FP) propagator. All these approaches are
based on a coarse grained Liouville dynamics of the density function in the limit of zero
coarse graining [8]. In [9] the blurring of phase-space structures is implemented by adding
a diffusive noise in the Liouville equation, which results in a coarse graining of the FP
propagator and the limit of vanishing noise is finally considered. An alternative method
developed in [5, 6] uses a truncation of the infinite unitary FP operator to a finite dimension N

in a basis of functions ordered by increasing resolution. The eigenvalues of this non-unitary
N × N operator are calculated and the limit N → ∞ is taken. Since noisy propagation
restores the quantum-classical correspondence, which is otherwise lost in short time scales,
the computation of RP resonances for chaotic systems is a powerful tool to explore the link
between classical and quantum mechanical dynamics and to look for the emergence of chaotic
signatures in the quantum mechanical system.

In the present work we compute the spectrum of the classical coarse grained FP and
quantum (Husimi) propagator for the discontinuous map on the sphere presented in [3], using
the truncation method of [5, 6]. We follow closely the procedure that Haake and collaborators
developed to study a system with mixed dynamics: the kicked top. We show that for low
resolution classical and quantum mechanical propagators coincide, although the convergence is
slow. We study the behavior of the eigenvalues and eigenfunctions of the truncated propagator
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with increasing resolution and compare our results to those obtained for a map with a mixed
phase space [5].

The area preserving map considered in [3] acts on the angular momentum vector
Ĵ = (Jx, Jy, Jz) = j (sin θ cos φ, sin θ sin φ, cos θ) of fixed length j . The corresponding
phase space is the sphere, and cos θ and φ the canonical variables. It has the form

M = Rz(ω)|Rx(µ)| (1)

that can also be rewritten as

M = Rz(ω)Ry(−π/2)|Rz(µ)|Ry(π/2), (2)

where |Ri(µ)| denotes a rotation around the Ji axis, of angle µ sign Ji . Under the action of
this map the points on the sphere with Jx < 0 rotate in µ while those with Jx > 0 in −µ

around the Jx axis. The whole sphere rotates then in ω around the Jz axis. That is, at each
step, every point rotates linearly except for those on the great circle Jx = 0 where the map
becomes singular. The unstable set is constituted by all the images and preimages of this great
circle. This is evidenced in the phase-space portrait. The bounds of one island of each chain
are tangent to the instability line φ = π/2, 3π/2.

The evolution of the phase-space density ρ of the system is given by

ρn+1(cos θ, φ) = Pρn(cos θ, φ), (3)

where P is the FP propagator that is related to the invertible map (1) by

Pρ(cos θ, φ) = ρ(M−1(cos θ, φ)). (4)

Equation (3) results from the formal integration of the Liouville equation

∂tρ = Lρ. (5)

Defining the Liouvillians corresponding to each rotation in equation (2), the FP operator
corresponding to this map reads

P = exp
[
LRz(ω)

]
exp

[
LRy(−π/2)

]
exp

[
L|Rz(µ)|

]
exp

[
LRy(π/2)

]
.

The matrix elements of P can be computed in the basis of the spherical harmonics Ylm(θ, φ),
which span the space of phase-space functions on the sphere and are ordered according to
increasing resolution by index l.

It can be easily shown that(
exp

[
LRz(ω)

])
lm,l′m′ = δl,l′δm,m′ exp[−imω] (6)(

exp
[
LRy(ω)

])
lm,l′,m′ = δl,l′d

l
m,m′(ω) (7)

(
exp

[
L|Rz(µ)|

])
lm,l′,m′ =

∫ 2π

0
dφ

{∫ 0

−1
d cos θY ∗

lm(θ, φ)Yl′m′(θ, φ − µ)

+
∫ 1

0
d cos θY ∗

lm(θ, φ)Yl′m′(θ, φ + µ)

}

= δm,m′

⎧⎪⎨
⎪⎩

cos µ for l = l′

0 for even l − l′

i/2 sin mµ
∫ 0
−1 d cos θPl,m(cos θ)Pl′,m′(cos θ) for odd l − l′,

(8)

where dl
m,m′(ω) are the Wigner’s d-matrix and Pl,m(cos θ) the Legendre functions. The last

matrix element, which can be computed analytically, couples subspaces with different values
of l. Therefore, a truncation of P up to a finite lmax leads to a non-unitary matrix.
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The quantum version of the map in the Hilbert space of the wavefunctions spanned by the
(2j + 1) eigenvectors of Ĵ z, |jm〉, is given by the Floquet operator

F̂ = exp[−iωĴ z] exp[−iµ|Ĵ x |] = exp[−iωĴ z] exp[−iπ/2Ĵ y] exp[−iµ|Jz|] exp[iπ/2Ĵ y],

(9)

where

|Ĵ z| =
j∑

m=−j

|m||jm〉. (10)

The density operator ρ̂ is now represented by the corresponding Husimi function Qρ(θ, φ) =
〈jθφ|ρ̂|jθφ〉 (that is, its diagonal matrix element in the basis of coherent states) and its time
evolution is given by

∂tQρ = GQρ. (11)

The Husimi propagator exp[G] is a unitary matrix of dimension (2j + 1)2. As for the classical
case their matrix elements exp[G] = exp[GRz(ω)] exp[GRy(−π/2)] exp

[
G|Rz(µ)|

]
exp[GRy(π/2)] will

be calculated in the basis of the spherical harmonics.
As shown in [6] the Husimi propagator for rotations is identical to its classical counterpart.

We are then left with the calculation of exp
[
G|Rz(µ)|

]
)lm,l′m′ , whose spectral representation is

(
exp

[
G|Rz(µ)|

]) =
j∑

m1,m2=−j

Q|jm1〉〈jm2| exp[−i(µ|m1| − |m2|)]P|jm1〉〈jm2|, (12)

where Q and P (the Q- and P-functions corresponding to |jm1〉〈jm2|) are respectively the right-
hand and left-hand eigenfunctions of exp

[
G|Rz(µ)|

]
) with eigenvalue exp[−iµ(|m1| − |m2|)].

To express the matrix elements of the propagator (12) in the basis of the spherical harmonics,
we need to calculate the scalar products 〈Ylm|Q|jm1〉〈jm2|〉 and 〈Ylm|P|jm1〉〈jm2|〉 which are sums
of Clebsch Gordan coefficients. We finally obtain

(
exp

[
G|Rz(µ)|

])
lm,l′m′ = δm,m′

2l + 1

2j + 1

min(j,j+m)∑
m1=max(−j+m,−j)

Cjm1

j (m1−m),lmC
jm1

j (m1−m),l′m

× exp[−iµ(|m1| − |m1 − m|)]. (13)

As in the classical case the matrix elements of the propagator are diagonal in m , but non-
diagonal in l.

We can easily show that when exp[G] is truncated to a dimension N = (lmax + 1)2 with
lmax � 2j it approaches its classical counterpart P(N). In this limit the sum in equation (13)
can be approximated by

(
exp

[
G|Rz(µ)|

])
lm,l′m′ ≈ δm,m′

2l + 1

2j + 1

⎡
⎣exp[iµm]

0∑
m1=−j

Cjm1

j (m1−m),lmC
jm1

j (m1−m),l′m

+ exp[−iµm]
j∑

m1=1

Cjm1

j (m1−m),lmC
jm1

j (m1−m),l′m

⎤
⎦ (14)

since |m| � lmax � 2j . Using then the asymptotic expression for l � j of the Clebsch
Gordan coefficients [10]

Cjm1

j (m1−m),lm→
√

4π

(2l + 1)
Ylm(θ, 0), (15)
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(a) (b) (c)

Figure 2. Quantal spectrum (case I) corresponding to lmax = 20 for j = 100, 200, 300.

(a) (b) (c)

Figure 3. Quantal spectrum (case I) corresponding to lmax = 40 for j = 100, 200, 700.

(where θ is the angle between ĵ and the z-axis) and approximating 1
2j+1

∑0
m1=−j by

∫ 0
−1 d cos θ

we recover equation (8). Therefore the matrix elements of the quantum propagator given by
equation (13) coincide with their classical counterpart of equation (8) for low resolution and
in this limit it will be equivalent to study the spectrum of the FP or the Husimi propagator.
However the convergence of the quantum mechanical propagator to the FP propagator is much
slower than that found for the kicked top in [6], where the quantum mechanical corrections
were of the order of l/2j + 1. This can be appreciated when comparing the quantal spectra of
figure 2, with lmax = 20 and different values of j , with the corresponding classical spectrum of
figure 4(a). The convergence gets worse as lmax increases, as shown in figure 3 which displays
quantal spectra for lmax = 40 and different values of j (to be compared with figure 4(b)).

We now diagonalize the truncated FP operator P(N), whose elements are given by
equations (6)–(8) in the subspace spanned by N = (lmax + 1)2 spherical harmonics with
0 � l � lmax. This corresponds to a resolution of phase-space structures of area 4π/((lmax+1)2.
Two sets of parameters ω,µ are considered in the map equation (1) with the corresponding
phase portraits shown in figure 1. In the first case (case I, ω = µ = π(

√
5 − 1)) few big

elliptic islands are present, corresponding to orbits of low periodicity. In the second (case II,
ω = 1, µ = 0.05 ) the quasi tori surviving in correspondence to the integrable case (µ = 0)

are visible.
In figure 4 we display the eigenvalue spectrum ofP(N) corresponding to case I for different

values of lmax. For coarse resolution lmax = 20 most of the eigenvalues λi concentrate inside
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(a) (b) (c)(c) (d)

Figure 4. Classical spectrum (case I) for lmax = 20, 40, 60, 70.

(a) (b) (c) (d)

Figure 5. Classical spectrum (case II) for lmax = 20, 40, 60, 70.

a ring corresponding to 0.9 � |λi | � 1. As the resolution increases, the outer ring becomes
narrower (for lmax = 70, 0.95 � |λi | � 1) and the fraction of the eigenvalues located in
the inner disk decreases. In case II (see figure 5), the situation is very much the same for
lmax = 70, that is, there is a very high concentration of eigenvalues inside a narrow ring and
a few values lying in the inner disk. However for low resolution lmax = 20 the distribution
looks different: most of the eigenvalues lie close to the unit circle. Other spectra have been
computed for different values of the map’s parameters ω and µ, corresponding to different
types of phase-space portraits with more or less dominant islands. The characteristics of the
spectra differ from case to case depending on the number of domains that can be resolved at
each given resolution. This non-universality was also remarked in [4] where the calculation of
quantal spectra of triangular billiards on the sphere showed that the level distributions do not
follow a universal statistics but can rather be understood in reference to the phase-space portrait
corresponding to each particular case. However the general features of spectra obtained with
high resolution are the same in all cases. There is always a densely populated outer ring,
corresponding to unimodular and almost unimodular eigenvalues, and a small fraction of the
eigenvalues lying in the inner disk. The eigenvalues move about when increasing lmax and no
‘frozen’ eigenvalues can be individualized.

A better understanding of the spectrum is achieved by plotting the distributions of the N
eigenvalues as a function of their modulus for different resolutions. As shown in figures 6
(for cases I and II, and lmax = 50, 60, 74) we can distinguish three regions: a peak at
0.95 � |λi | � 1 (that is, ln |λi | � −0.05), an intermediate domain corresponding to
approximately 0.85 � |λi | � 0.95 which looks very much the same for all resolutions and a
small number of values with |λi | � 0.85. While the peak corresponding to 0.95 � |λi | � 1
grows for increasing values of lmax, the number of states with |λi | � 0.95 remains fairly
constant, so that the fraction of non-unimodular eigenvalues decreases with increasing
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Figure 6. Number of eigenvalues (in a logarithmic scale) as a function of ln|λi | for different values
of lmax in (a) case I and (b) case II.

resolution. Moreover, the numerical results seem to imply in the intermediate region a
relationship n(|λ|) ∼ |λ|α , where the exponent α is independent of the resolution. At this
stage we cannot interpret this observation. The eigenfunctions corresponding to these three
regions are of different nature. Some examples are represented in figure 7 for case I and
lmax = 70 and in figure 8 for case II and lmax = 70. Eigenfunctions with unimodular eigenvalue
are shown in figure 7(a) and figure 8(a): they are supported by the elliptic islands that can
be resolved at the corresponding lmax. Eigenfunctions corresponding to quasi unimodular
eigenvalues (0.9 � |λi | � 0.95) have the structure displayed in figure 7(b) and figure 8(b).
Their amplitude is evenly distributed over a large number of islands. Finally for |λi | � 0.85
the eigenfunctions are of the type shown in figures 7(c) and (d) and figures 8(c) and (d): they
locate along the instability line and along curves which are their first iterations by the map M .

On the basis of these numerical results we can describe the P(N) spectrum, consisting
of unimodular, almost unimodular and non-unimodular eigenvalues, and its evolution with N
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(a) (b)

(c) (d)

Figure 7. Eigenfunctions of the classical propagator P(N) (case I, lmax = 70) corresponding to
eigenvalues with (a) |λ| = 1, (b) |λ| = 0.97, (c) |λ| = 0.85, (d) |λ| = 0.72.

as follows. Unimodular eigenvalues correspond to eigenfunctions which locate in the elliptic
islands visible at the given resolution: when N grows more and more elliptic structures are
resolved and their number increases. The group of almost unimodular eigenvalues correspond
to eigenfunctions which are not fully localized yet and spread over several islands. The fact
that their number remains approximately constant with N, showing a compensation between
the migration of existing eigenvalues to the unit circle and the appearance of new ones, related
to still unlocalized states, can be explained by the existence of an infinite hierarchy of phase-
space structures which are gradually resolved. Finally, we saw that eigenvalues with moduli
|λi | � 0.85 correspond to eigenstates sharply localized on the instability line. These states
are present for any value of N and their number seems to be approximately constant, so that
they will represent a vanishing fraction of the spectrum in the limit N → ∞.

As expected, the observed evolution of the P(N) spectrum with N is different from that
obtained for the integrable system (corresponding to µ = 0 in our map) , where all eigenvalues
migrate to the unit circle in the N → ∞ limit and unitarity is recovered. The situation is also
different from that observed for chaotic systems, where P(N) has an essential spectrum inside a
circle of radius (r > 0) and a point spectrum inside a disk r < |λ| < 1, with some eigenvalues
(that can be related to the RP resonances) persisting in their positions for increasing values
of N [11]. In the system under study, non-unimodular eigenvalues exist but ‘freezing’ is not
observed.

Summarizing, we computed the matrix elements of the FP operator P(N) and of the
quantum Husimi propagator for discontinuous piecewise linear systems and showed that they
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(a) (b)

(c) (d )

Figure 8. Eigenfunctions of the classical propagator P(N) (case II, lmax = 70) corresponding to
eigenvalues with (a) |λ| = 1, (b) |λ| = 0.95, (c) |λ| = 0.88, (d) |λ| = 0.75.

coincide in the limit of low resolution. We investigated the evolution of the spectra of the
truncated propagator P(N) with N. As for systems with a regular dynamics [11], we observed
that any neighborhood of unity contains more and more eigenvalues as N increases. However,
non-unimodular eigenvalues are present for any value of the resolution, in contrast with the
regular case, where they all migrate to the unit circle when the resolution increases. The
persistence of non-unimodular eigenvalues could not be numerically tested for values beyond
lmax = 74 due to computational limitations, but it can be intuitively explained by the fractal
structure of the unstable set, which supports the corresponding eigenfunctions. As in the
chaotic case [5], unitarity is never recovered since there is at any finite resolution an effective
dissipation due to the loss of probability to finer unresolved phase-space structures. We
observed that the eigenfunctions localized on the instability line are always associated with
non-unimodular eigenvalues which represent a vanishing fraction of the total spectrum in
the limit of large N . We interpreted this fact as an indication of the zero measure of the
unstable set. This seems to contradict the numerical results presented in [12] supporting
the conjecture that the unstable set has positive Lebesgue measure. Another result of our
numerical investigation is the absence of ‘frozen’ eigenvalues persisting in their positions for
N → ∞, indicating that the ‘resonances’ will not be a characteristic of the classical system
but rather will depend on the resolution. This constitutes a significant difference with respect
to systems with mixed dynamics [5] where the modulus of the ‘frozen’ eigenvalues, identified
as resonances of the classical system, are shown to be the decay rate of a wave-packet initially
located in the phase-space region where the resonance eigenfunction has large amplitude. In
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the system we are considering, we do not expect that the non-unimodular eigenvalues will be
observable as decay rates of special initial states even at finite resolution. The reason is that
any smooth density distribution placed in the vicinity of the instability line will have a large
fraction overlapping with unimodular states, while the overlap with the instability line is of
zero measure and thus very small in any numerical experiment at finite resolution.
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